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SUMMARY

New methods for the inverse problem of internal dosimetry are
proposed based on evaluating expectations of the Bayesian poste-
rior probability distribution of intake amounts, given bioassay mea-
surements. These expectation integrals are normally of very high
dimension and hence impractical to use. However, the expectations
can be algebraically transformed into a sum of terms representing
different numbers of intakes, with a Poisson distribution of the num-
ber of intakes. This sum often rapidly converges, when the average
number of intakes for a population is small. A simplified algorithm
using data unfolding is described (UF code).
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1 Introduction

One goal of internal dosimetry is the determination of intakes of radioactive
materials into the body from limited bioassay data. These data indicate the
amount excreted from the body, for example, in urine. Given agreed-upon,
forward, biokinetic models that summarize our scientific understanding of how
the material passes through the body and imparts dose (e. g. ICRP publications
30, 54, and 66)[10][19][20], there remains a formidable inverse mathematical
problem: given the amount excreted in urine as a function of time, determine
the times, amounts, and types of intakes, including estimates of uncertainties.
This generic type of linear, underdetermined, inverse problem with a positivity
constraint is well suited to a Bayesian approach.

The causal character of the biokinetic response (excretion follows intake) al-
lows simple unfolding techniques, which have been used exclusively in the past
(see Lawrence, 1962, and Ward and Eckerman, 1992).[13, 26] Since excretion
follows intake in time, intakes in a given sampling interval affect only subse-
quent urine excretion amounts and not urine excretion amounts preceding the
intake. Thus, assuming an initial baseline bioassay sample and no preceding
work history around the material, the second urine data value can be used to
determine a possible intake in the first bioassay sampling interval (between the
first and second samples). Calculated excretion resulting from this intake is
subtracted from subsequent data values to determine possible subsequent in-
takes. These approaches suffer the criticism that the statistical significance of
calculated intake amounts has not been calculated. The question of whether
a calculated intake is real or statistically significant has not been addressed,
except that negative calculated intakes are usually assumed to be not real (the
linear unfolding techniques used so far allow negative intakes). In this paper we
propose a Bayesian version of a data unfolding algorithm.

One of the problems of internal dosimetry is to select parameters of the bioki-
netic model (specifying the intake type) that “best describe” the data, given an
agreed-upon model. This is equivalent to choosing the “best fit” model from a
set of models calculated using different parameter values. Our methods incor-
porate the models as large, interpolated tables of excretions and organ doses
versus time for unit intake; any set of linear models may be used as long as
they adequately describe the possible patterns of excretion (by the principle
of Occam’s razor, one would choose the simplest such set of models that are
otherwise satisfactory). In general, there will be a set of available biokinetic
models distinguished by various parameter choices (for example, particle solu-
bility in lung fluids and particle size, which determines the deposition pattern
in the lung) as well as selecting qualitatively different models (such as the 2**Pu
time-varying solubility model discussed in Appendix A). For our current calcu-
lations for occupational plutonium exposure, we use a set of models based on
ICRP publication 30[10] since this is currently the basis of United States De-
partment of Energy regulations. For 22 Pu inhalation intakes, we use 6 models



corresponding to 6 assumed intake types: class Y and class W with particle size
0.2 1.0 and 5 um AMAD (a more detailed discussion of the biokinetic models
we use for plutonium is given in the Appendix A). Default recommendations are
generally given; for example, for plutonium the ICRP recommends that class
Y, 1.0 pm AMAD be chosen in lieu of other information. For the same urine
excretion, the choice of model can have a large effect on the calculated dose (for
plutonium with a given urine excretion, the assumption of class W decreases the
dose by about an order of magnitude relative to class Y). The internal dosimetry
algorithm needs to take into account that different models are available with
some being preferred. Also, the calculated uncertainties need to reflect this fact.

In a previous paper (Miller and Inkret, 1996),[17] we applied a well-known
method in the field of radio-astronomy image reconstruction, the maximum en-
tropy method (see Skilling, 1989),[22] to internal dosimetry. Using the maximum
entropy method, intakes are necessarily positive and we are able to calculate the
statistical uncertainty of intakes. However, the calculated intake scenarios tend
to assign too many intakes to agree with our overall understanding and experi-
ence of how frequently acute intakes of this magnitude occur.

The problem with the maximum entropy method is the entropy form of
the prior probability distribution. The entropy distribution is approximately
exponential in the parameter range of interest and has a fixed value of the
ratio of standard deviation to mean. To represent the probability distribution
of radionuclide intakes into the body under typical conditions, the distribution
needs to have a d-function component representing “no intake”. Distributions of
this form can have an arbitrarily large value of the ratio of standard deviation to
mean, unlike the entropy distribution, and they can be used as prior probability
distributions to self consistently model situations where the observed frequency
of intakes (population average) is small.

2 Bayesian Formulation of the Internal Dosime-
try Problem

The current approach to internal dosimetry is to interpret bioassay measure-
ments in terms of radionuclide intake amounts. Let z; for i = 1 to N denote
the amount of intake that occurred during time interval i, where N is the total
number of time intervals. For example, in plutonium internal dosimetry z; is
the activity of plutonium taken into the body on the i*" day by inhalation or
via a contaminated wound.

The bioassay data are denoted by y; for j = 1 to M, with uncertainty
estimates (standard deviations) ;. The number of possible intakes N exceeds
the number of data points M, usually by a large factor.

The biokinetic response is assumed to be one of a known finite set of linear
functions (the biokinetic response in this case is the fraction of intake excreted



in urine as a function of time) of the form
! !
7= o). 0

where [ denotes a particular intake type. Equation 1 gives the predicted bioassay
result at time 7 given intakes z;, where ugé) is the {*" biokinetic response function
at time 7 for unit intake at time i.

The bioassay data uncertainty o is in fact a function of the predicted bioas-

say result f;l). For example, part of the uncertainty may come from biological
variability of the urine excretion process, which is proportional to how much is
being excreted.

Our desire is to determine the “best fit” values of {z;} and { given {y;} (read
{z;} as “the set of z; for all ¢”). The method described here is to define “best
fit” as the expectation value of the Bayesian posterior probability distribution,
given the data and a prior probability distribution (for a good reference on
Bayesian methods see Ref. [1]).

The prior probability distribution of {x;} and [ is denoted by P({z;},{). We
assume that the prior probability of [ is independent of time and that intakes
occuring at different times are independent and have an equal probability of

occurrence, so that
P({z:}.0) = PO T] Plail), 2

where [] denotes the product. The quantity P(z;|l) is the conditional proba-
bility of z; given intake type { (the vertical bar is read as “given”). Since it
represents the probability density function of a continuous variable x;, it needs
to be multiplied by dz; to obtain the probability that x; is in interval dz; (this
is our notational convention for continuous variables). Also, P(l) represents the
prior probability of intake type [. It is convenient to define the conditional prior
probability measure W dX as

WdX = [ [ P(xi|l)da:. (3)
i
Assuming independent Gaussian measurement uncertainties, the probability

distribution of measurements {y;} given intakes {z;} and intake type [, often
referred to as the likelihood function, is given by
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From Bayes’ theorem, the posterior probability distribution of intakes {x;}
and intake type { given data {y;}, is given by

P({zi} Iy} o< P(y; =i}, P} 1)
x POFWdX. (7)
For any function ¢ of {z;} and [, the expected value of g over the Bayesian
posterior distribution is therefore
>, P() [ gFWdX

Elg) = >, P() [FWdX ®)

3 Scaling With the Intake Time Interval

Let the total time interval for possible intakes be denoted by 7T'. The time
interval T has been divided into N equal subintervals of size At =T/N, where
intakes x; may have occurred, for ¢ = 1, N. The time scale for specifying intakes
depends on the biokinetic response (the urine excretion pattern following an
intake of unit amount). Intakes need to be specified on the time scale of the
most rapid biokinetic response; however, since urine collection is a discrete
process that is reasonably averaged over a day, At is often taken as one day.

From a mathematical standpoint it is interesting to imagine that urine ex-
cretion is a continuous process, and consider the limit A¢ — 0. In this limit,
the prior probability of an intake with amount in the range dx; occurring in the
i*™ time interval At, is

w(z; ) Atdz,, (9)

for z; > 0, where w(z;) is a positive function giving the intake probability per
unit time (for notational simplicity the dependence of w on intake type [ has
not been explicitly shown). The important scaling relation is that the intake
probability approaches zero as the time interval goes to zero. This means that
the normalized prior probability distribution function is of the form

WdX = [[{[6(z)(1 = AAE) + w(w;) At] da; (10)

where the delta function 6(z; ) represents the probability of no intake in the time
interval At (the delta function can be thought of as the limit of functions that
are nonzero only in a small region around 0 and such that f 0(t)dt = 1, as the
size of the region approaches zero) and

)\/Ooow(a:i)da:i. (11)



Equation 10 can be interpreted as a product of mixture distributions in which,
for the i*" time interval of length At, there either is no intake of any positive
amount x; with probability 1 — AA¢ or there is an intake of positive amount z;
having conditional probability w(x;)dz;/\ with probability AA¢. Also, At is
assumed to be sufficiently small such that the probability of two or more intakes
in At (of order At?) can be ignored. The probability is correctly normalized
because

/ 16 (1 — AAE) + (i) A das — 1. (12)

4 Poisson Sum Representation

Equation 10 can be algebraically reduced to a sum of terms representing different
numbers of intakes. The first three terms representing 0, 1, and 2 intakes are
as follows:

no intakes : (1 — )\At)N ﬁ 0(z; )dz;
i=1
1intake : (1— )\At)Nfl NIAt 1 Z [w(xz)d% ﬁ 5(xi/)dazi/}
N i A i'=1
i #i
2 intakes : (1 — )\At)Nfg W(AAQQ

1 w(z;) 1 a w(zx}) N
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(13)

In the term representing 2 intakes, the factor N(N — 1)/2 has the 2 in the
denominator because of the 2! (2 factorial) different possible orderings of the 2
time intervals ¢ and 4’

By inspection of Eq. 13, the general binomial term representing n intakes
has the coefficient

N

n

P,=(1— )\At)N”< )()\At)”. (14)

Now, approximating for n << N (i. e., the number of intakes is much smaller
than the number of time intervals where intakes could occur),

Ny Nt N® 5)
n 7n!(N—n)!N n!’



and therefore,

QT

P,~e¢ —.n=01..,
n

(17)

the Poisson probability for n events, when the average number of events is AT
One may also recognize Eq. 14 as the binomial distribution of n successes
in N independent Bernoulli trials with probabilities p = AAf for success and
q = 1 — p for failure. The Poisson approximation holds if N is sufficiently large
and p is small.
The Poisson probability is normalized, so that

ipn —1. (18)

The sums over time intervals in Eq. 13 will convert to integrations over
continuous time using the replacement

%;H%/dt. (19)

In term-by-term integration over Eq. 13, the § functions disappear. It is
convenient to define a prior probability measure for n intakes as

product of n terms

_dt w(a:t)d dt’ w(xy)

This probability measure is normalized, so that
/Wn X, — 1. (21)

The Poisson sum representation of Bayesian posterior expectations, correspond-
ing to Eq. 8, is given in terms of W,, dX,, as

_ ZZO:O P, Zz P(l) fQFWn aXx,
Blo) =55 B S P) [ FW, X, 22)

Equation 22 can also be written as

E(g) = Z E(gln)m(n), (23)

in terms of the conditional expectation of g given n intakes defined by

S P [ gFW,dX,

S, P [fFW,dX,,

and the marginal probability of n intakes, defined by,
P>, P(l) [ FW,dX,

= S BT PO FW, X, )

E(gln) =




5 The Unfolding Algorithm

In what follows a simplified algorithm that avoids the multiple integrations
of Eq. 22 is discussed. It is assumed that the time interval between bioassay
samples is small enough that the probabilities of two or more intakes is negligibly
small. This requires the average number of intakes from the prior probability
distribution, AAt, to be small. In other words, in the sampling interval At there
are 0 or 1 intakes with probabilities Py and P; given by

Py = exp(—AAD),
P = 1—exp(—AAY) (26)

(We choose this form rather than Py = 1— A A¢, P, = AA{ to more easily handle
cases where AA¢ is somewhat large).

Equation 22 is applied to the i*" sampling interval in the following way.
Consider a function g(x;,!) of the intake amount z; and intake type {. Firstly
the integration over time in Eq. 19 is replaced by evaluation at the central time
of the interval. The expected value of ¢ is then given by

Pog(0) + P 32, P(1) [ 252 B g () da
9)= w(x;) Flx; ’
Pot P35, P S (A)F((o))di

(27)

where w(x;) is the prior probability distribution of the intake amount z; (a log-
normal form is assumed), and F(z;)/F(0) is the ratio of likelihood functions

given by
Pe) g o] (D - x40
N ];[Uj(xz) p( 2 ) ’ (28)

where j enumerates the data points used to determine the intake if more than
the righthand data point of the interval is used. In Eq. 27 we have used the
fact that there is no dependence on intake type [ when there is no intake, and

> Pl)=1. (29)
1
It is sometimes convenient to rewrite Eq. 27 in the form

ZE (gl »)Py), (30)

where E(g|l,y), the posterior expectation value of g given [ and the data, is
given by

E(gll,y) =
R S E=ar

(31)




and P(l|y), the posterior probability of intake type ! given the data, is given by

w(xz;) Fxz;
Pyt Py f ( >F<(O)> da;

P(lly) =

—_
o~
~—

(32)

The variance of a an arbitrary function g(z;, ) can always be calculated in
terms of expectation values thus:

Var(g) = E(g°) — E(g)*. (33)

In the evaluation of x?(x;,1), defined by Eq. 6 (although now we make the
dependence on z; and [ explicit), the calculated urine excretion at the time of
the 7 data point is given by

10 = e £ 3w, (34)

i <

rewriting Eq. 1 to show how it depends on the intake x; and previous intakes.

The summation above extends over all previously determined intakes x; that

have occured earlier in time. The uncertainty variance of the 7 data point
2

03 (;), which enters into x*(z;,[), contains four components:

UJQ' (z;) = a2 + (B, fj) (Bvxiuij)g + 0;2, (35)

measurement, uncertainty, sample collection/biological variability equal to the
coefficient of variation B, times the Bayesian posterior expectation excretion
f; coming from earlier intakes at the time of the 5™ sample, sample collec-
tion/biological variability associated with the new intake, and uncertainty of
the calculated excretion due to earlier intakes. The latter is given by

!
2= ZVar(xi/ug,;.). (36)
i <i

The variances add since the earlier intakes are determined by separate blocks of
data and are statistically independent. In calculating variances of an arbitrary
quantity d proportional with coefficient D; for intake type [ to an intake amount
z; as in Eq. 36, we use the formulas

@ ~ 3Dl (37)

Var(d) = ZDz |l,y)P(lly) — B(d)*.

For a discussion of sample collection/biological variability see Ref. [18]. For
true 24 hour samples we use B, = 0.1; for specific-gravity corrected, simulated
24 hour samples, we use B, = 0.3.



A subtlety caused by having the uncertainty depend on z; is that for data
values that are many standard deviations negative (normally very rare), the
Bayesian posterior mean tends to be large and positive. In other words, large
negative data is explained as statistical variation from a large positive true value
allowed by large sample collection /biological variability uncertainty. In practice,
problems are avoided by 1) by increasing the measurement error uncertainty of
negative data values so they are no more than some given number (say 2) of
standard deviations negative and 2) by increasing the propagated uncertainty of
excretion from earlier intakes so that data minus background satisfies the same
criterion.

Data unfolding depends on causality, that excretion follows intake in time, so
that intakes in a given sampling interval affect only subsequent urine excretion
amounts and not urine excretion amounts preceding the intake. Thus, starting
with the first (earliest in time) sampling interval, the intake in each sampling
interval is determined by the right-hand urine data value of that interval, as the
expectation value of the Bayesian posterior probability distribution, using Eq.
27 with g(x;) = x;. For all intervals except the first, the excretion expected from
previous intakes and its propagated uncertainty is included in this calculation
because of Eq. 35.

Unfolding then becomes a sequence of one-dimensional integrals over intake
amounts using Eq. 27 to determine expectation values and variances from the
posterior distribution. Figure 1 shows the result of unfolding bioassay data in
this manner. This example uses numerically generated data, for a low level
tritium case (the biokinetic response is assumed to be a simple exponential with
a 10 day half life). Figure 2 shows the result of the first step of the iterative
unfolding process, where 9 intake amounts are determined as expectation values
using Eq. 27 with x? determined by one data point (the right-hand data point)
in each of the 9 sampling intervals.

After carrying out the first data unfolding as described, we obtain a set of
intake amounts z; for each bioassay sampling interval, and we can calculate the
Bayesian posterior probability for each intake as the marginal probability of an
intake given by Eq. 25. In this situation, the intake probability is equivalently
calculated using Eq. 27 with g(z;,1) =1 for z; > 0.

A single step in the iterative process consists of dropping the least probable
intake and repeating the unfolding. The iteration is stopped when the minimum
of all the intake probabilities exceeds some limit (say 0.5). The exact value of
the intake probability limit is not very critical, since intakes tend to have either
very small probabilities or probabilities near 1.

For the example shown in Fig. 1, the intake in the first sampling interval
was the least probable after the first iteration, so it was dropped in the second
iteration. The second iteration repeated the unfolding, assuming no intake
was possible in the first sampling interval. In this case all the expectation
integrals (starting with the second subinterval) needed to be recalculated, since
the excretion tail produced by the first intake is no longer present in the later
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Figure 1: Urine bioassay data and a calculation result based on data using the
Bayesian posterior expected values of intakes in each monitoring interval.
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Figure 2: Final expected urine excretion curve.
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subintervals. If, say, the intake in the 6th subinterval rather than the 1st had
the smallest probability and was dropped, then the 6th and 7th data points
would have been used to redetermine the intake in the subinterval between the
5th and 6th data points, and all subintervals to the right would have needed
to be recalculated. The algorithm proceeds in this way, using separate blocks
of data to determine single intakes, iterating the unfolding process until all the
remaining intakes have probabilities exceeding the prescribed limit. The final
result for the example shown in Fig. 1 is shown in Fig. 2. In this case only
one highly probable intake remains, with Bayesian posterior probability of 0.97,
reproducing the intake assumed to generate the data.

This method results in an intake scenario with relatively few, well deter-
mined, intakes, well suited to the reality of most occupation monitoring situa-
tions, where intakes are rare, and to the regulatory requirement that all intakes
be reported and justifiable (see Code of Federal Regulations 10CFR835).[2] An
intake scenario with relatively few intakes results in higher dose estimates for
cases with nonzero dose, as has been discussed (see Miller and Inkret, 1996).[16]

In contrast, simple unfolding techniques are not probabilistic. The intake
in each sampling interval is determined so that calculated excretion matches
the right-hand urine excretion data value exactly, even if the required intake
amount is negative. Also there is no method to calculate uncertainties in the
excretion expected from intakes occurring at earlier times, which is an important
background that must be subtracted to determine if new intakes have occurred.
Finally, there is no way to determine intake probability, in order, say, to drop
improbable intakes.

A final consistency check is to see whether the calculated excretion is statisti-
cally consistent with the observed excretion. A measure of statistical consistency
is the overall x? given by

v = ZM7 (38)

7 %5

where f; is the Bayesian posterior expectation value of excretion from all intakes

at the time of the j*™ data point. In this case, UJQ. is calculated as

oF = 0%t (Bufy)’ (39)

in terms of measurement uncertainty and sample collection/biological variability
uncertainty. Roughly, x?/M should be about 1, where M is the number of data
points, for the final result to be statistically consistent. Cases with larger values
of x?/M are, regardless of the exact normalization, more questionable.

An example of an actual ?*®*Pu case is shown in Fig. 3. This example
is discussed in detail in Appendix B. In this case there are three calculated
intakes, two of which are not associated with known incidents. The cumulative
committed dose is 0.14 Sv x= 1.8; x?/M is 1.5 for M = 37 data points. The
use of a multiplicative factor to express uncertainty is discussed in Appendix C.

11
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Figure 3: Actual 2*®Pu case having 3 calculated intakes.

6 Discussion

A simple use of the Poisson sum formalism is the unfolding algorithm. This has
been implemented in the UF (unfolding) code. The quantities A and the log-
normal parameters are prescribed functions of time, describing how the prior
distribution varies with time. Ideally, these functions are determined iteratively,
by assuming some reasonable initial values, calculating intakes for a population
of workers, and then determining population averages of the distribution of
intakes for different historical periods, to be used to determine the new prior
distribution. This iteration process is continued until it converges.

For non-routine situations (accidents or other off normal occurrences), where
there is information from workplace indicators (for example, nasal swipes or air
monitor levels) that an intake may have occurred , then the time of the possible
intake is known and its prior probability is specified as a discrete probability
that an intake occurred based on values of the workplace indicators. For exam-
ple, this probability might be taken to be 0.5 for the usual range of workplace
indicators and might even be 1 in extreme cases. The prior probability param-
eters (the parameters of the log normal distribution) are discretely specified for
a non-routine intake. The prior probability distribution for a known occurrence
can be used to incorporate the results of other measurements, for example, in
viwo lung counts. In an accident situation where good lung data is available, in
analyzing the urine data the prior probability of an intake would be set to 1,

12



and the prior probability distribution parameters would reflect the lung count
measurement results and associated uncertainties.

One of the advantages of the present formalism is that it mathematically
describes the intuitive concept of the number of intakes, being able to address
questions such as whether or not an intake has occurred, since these are concepts
often used in practice.

The UF code has been used to analyze plutonium urinalysis data for every-
one in the Los Alamos database (some 14000 people-requiring about 30 hours on
a Pentium workstation), giving encouraging results. A trial software and docu-
mentation package for the UF code is available for download from our Bayesian
World Wide Web site http:\\www.lanl.gov\Bayesian (Bayesian software pack-
age IT).

An entropy form of the prior probability distribution for daily radionuclide
intake was investigated previously (Miller and Inkret, 1996)[16]. This form of
the prior probability distribution was not able to model the infrequent acute
intake scenarios that are often observed in practice. In particular, the standard
deviation divided by the mean of the entropy distribution is fixed, unlike the
prior probability distributions considered in this paper. To see this property
of distributions with a ¢ function component (representing “no intake”), let
w(z)/A be a probability distribution with mean i and standard deviation o.
The distribution

@)1 - ) 1 p Y (10)

then has standard deviation divided by mean given by

o> +p(l—p) 1
p VP

which becomes arbitrarily large as p — 0.

The most ambitious application of the Poisson sum formalism is to the entire
time interval over which urine data have been collected and not sampling interval
by sampling interval using data unfolding. As we have shown, a solution of the
internal dosimetry problem can be written down quite elegantly and concisely
in terms of Bayesian posterior expectation values. This would seem to be the
definitive solution of the problem, provided the calculations can be carried out.
In plutonium internal dosimetry, the number of possible intake days, NV, is quite
large, often of order 10000. In this situation, direct evaluation of the 10000-
dimensional integral given by Eq. 8 is out of the question. Often, however, the
average number of intakes in a population is small. In this case, the Poisson
sum representation converges rapidly for small numbers of intakes. Evaluation
of the requisite low dimensional integrals appearing in Eq. 22 is then feasible,
say, using Markov Chain Monte Carlo methods (Tierney, 1994, Gilks et. al.,
1996)[25][6]. We have made some initial explorations of this technique with
encouraging results.

(41)
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A Appendix—Biokinetic models

Any set of biokinetic response functions may be used with these methods, ob-
tained by varying parameters of a preferred biokinetic model. The choice of
finite, discrete set of biokinetic response functions to span what is actually a
multi-dimensional space is an approximation that has some effect on the calcu-
lated results and uncertainties. This is an area of Bayesian “subjectivity” that
relies on professional judgment. To illustrate in more detail the use of biokinetic
models, we will discuss the case of plutonium in detail in this appendix.

For plutonium internal dosimetry, we use biokinetic response functions based
on the ICRP publication 30[10] model, since this is currently the basis of U. S.
Department of Energy regulations.

A computer code has been developed to calculate the ICRP publication 30
model and generate the required tables of linear biokinetic response functions.
These tables are included in the Bayesian software package II that may be
downloaded from our web site http:\\www.lanl.gov\ Bayesian.

In principle, the code CINDY|[23] might be used to calculate biokinetic re-
sponse functions; however, there is no provision for writing files of a specified
format, and also we found it necessary to go outside of the ICRP publication
30 framework and introduce time-varying solubility time constants in order to
describe the observed behavior of certain cases involving Pu-238, which will be
discussed later. Where possible, we have checked our results against CINDY
and have found them to be in agreement.

The plutonium biokinetic model consists of some 30 coupled linear first-order
differential equations in time that have widely disparate time scales, from 0.01
day to 10000 days. Thus, the simplest explicit methods of solving differential
equations are not adequate. However, the solution of these equations with the
Gear method|[5] subroutine LSODE[9] does not present any particular problem.

A.1 Standard Plutonium Biokinetic Models

The compartmental biokinetic model for plutonium is shown schematically in
Fig. 4.

The urine excretion model is based on the Langham injection studies[12].
In calculating urine excretion, the intake to the blood compartment from the
lung and small intestine is treated as an equivalent rate of injection. The four-
component exponential Jones fit (J1 through J4)[11] is used to represent the

14
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Figure 4: Biokinetic model for plutonium.
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data from the injection studies.

The existence of the injection studies data is extremely important for pluto-
nium internal dosimetry. Any biokinetic model must then agree with this data
in reproducing injection/urine-excretion behavior. Thus any biokinetic model
that reproduces the urine excretion pattern must have the same equivalent in-
jection into the blood, in the case of inhalation, coming from the lungs. Given
this constraint, it is unlikely if not impossible for different plutonium biokinetic
models to disagree by a large factor in dose predicted from urine excretion.

The calculations are carried out using the FORTRAN 77 program BIOK,
which relies on the subroutine LSODE[9] to solve the differential equations.

Doses are calculated as a function of time by the program BIOK for the
following organs: lung, bone surface, bone marrow, liver, and gonads. Follow-
ing ICRP publication 30[10], plutonium is assumed to reside on bone surfaces.
Under these assumptions, the single bone compartment actually consists of two
equal subcompartments, trabecular and cortical bone. The specific effective en-
ergy (SEE) matrix is diagonal, except for these bone components as shown in

Table 1.

Table 1: SEE matrix components for bone (MeV per transformation of 23°Pu).

target cort bone trab bone
r. marrow 0.034
bone surf 0.21 0.21

Thus, the dose to the red marrow is a constant factor 0.034/(0.21 +0.21) =
0.08 times the bone surface dose.

The gonadal dose for a woman, to ovaries rather than testes, is a constant
factor 0.314 times that for a man, corresponding to the ratio of assumed frac-
tional amounts transferred from the blood.

The output from BIOK consists of a table of urine excretion and doses
(effective whole body and individual organ) as functions of time, which is meant
to summarize, by interpolation, the entire excretion and dose pattern. Such
tables are calculated for a set of standard intake models denoted by a three
character code, for example, iym denoting inhalation of class Y medium (1 pm
AMAD) particle size. Results are also calculated for small (for example iys, 0.2
pm AMAD) and large (for example iyl, 5.0 um AMAD) particle sizes, and for
class W.

Wounds are simulated by using the compartment structure of the lung model
but changing parameter values. By setting the fractional depositions f, = f. =
1 in the two upper lung regions, effectively making the lung consist of only
the two compartments a and ¢, these lung compartments are used to simulate
two wound compartments. Three wound models have been defined with intake
codes wnd, wdt, and win. The parameters for wnd are obtained from the
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observed movement of plutonium out of soft tissues for six human cases[4],
where it is seen that 1/3 has a retention half time of about 7 days, and 2/3
has a retention half time of about 500 days. The parameter values for wdt are
based on fitting data from a particular Los Alamos case. The parameters for
win correspond to prompt, complete injection of material from the wound to
the bloodstream. Values of the deposition fractions and time constants for the
a and ¢ lung compartments for the three wound models are shown in Table 2.
In Table 2, Dyp and Drp are the deposition fractions in the Nasal Passage

Table 2: Lung model parameters used to simulate wound compartments.

intake code Dyp Drp T4(d) Te(d)
wnd 0.67 0.33 500 7
wdt 0.7 0.3 30 1
win 1.0 0.0 0.1

(NP) and Trachea and Bronchial tree (TB) regions of the lung, and T4 and T
are retention half times of compartments a and c.

A.2 Special 2*Pu model based on Wing 9 Accident

In 1971 an accident occurred in wing 9 of the CMR building at Los Alamos
involving inhalation of plutonium 238, where the observed urine excretion from
a number of highly exposed individuals showed an unexpected behavior. There
was little excretion of plutonium for a time on the order of 100 days, and then
the excretion rate rose to large values. This type of behavior disagrees with
the standard models, class Y or W and different particle sizes. Guilmette and
Hickman et. al.[7][8] adapt a biokinetic model developed for canine studies to
describe this behavior. The published paper contains an error of a factor of 10
in the calculated doses (the published doses are too small).[15] We sought to
describe the behavior within the framework of the ICRP publication 30 model
to be consistent with the other models we use.

The ICRP publication 30 model was modified as follows. The lung compart-
ments a, ¢, e, and ¢, which feed the blood, are assumed to have time varying
solubility time constants, initially very long, corresponding to highly insoluble
material, and then changing to normal values for class Y material, with the
change of time constants taking place over some time 7. Following work at
Hanford, which defined class super-Y plutonium, the initial insoluble time con-
stant is taken as 10000 d [24]. Therefore, the a, ¢, €, and ¢, compartment half
times are assumed to be themselves functions of time. We arbitrarily choose
the simple analytical form
Tal + 7—aY%

42
1+£ 7 (42)

Tq =

17



100

104

Urine Bxcretion (mBg/d)

— Ty Ty — Ty — Ty ]
1 10 100 1000 10000

Time after intake (d)

Figure 5: Urinalysis data from an individual involved in Wing 9 incident and
fit, showing the slow onset of plutonium excretion.

where 7, is the half time of compartment a, 7,; is the initial insoluble half
time of 10000 days, 7,y is the normal class Y half time, and 7 is a parameter
specifying the time scale of this change of solubility process. The parameter 7,
and the particle size, were adjusted to best fit data from a particular case shown
in Fig. 5. Using autoradiography of dog lung tissue samples, Mewhinney and
Diel[14][3] have identified the underlying physical process causing the change of
solubility as fragmentation of larger insoluble particles by « activity.

The quantity 7 was found to have the optimum value 7 = 7 days and the
particle size AMAD = 0.2um. The fit obtained from this case (denoted by the
three-character code iee) was found to adequately fit the other wing 9 cases as
well, as shown in Table 3. Table 3 gives the intake amounts, committed effective
dose equivalent (CEDE), corrected CEDE from Ref. [8], and values of x?/M,
for the seven wing-9 cases with the largest intakes. For a fit to be statistically
acceptable, x2/M should be on the order of 1, as is seen to be the case. Our
time-varying solubility 2*®*Pu model is seen to give CEDE’s that are about a
factor of 1.5 larger than those from Ref. [8].
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Table 3: x?/M for the wing 9 cases with the largest intakes.

intake(kBq) CEDE(Sv) CEDE(Sv) Ref. [8] X2 /M M
79 12.30 8.4 0.85 80

59 9.10 5.9 1.12 96

43 6.60 2.0 5

43 6.60 4.2 0.8 71

14.1 2.20 1.4 1.4 62

8.1 1.25 0.84 1.2 64

7.8 1.20 0.80 1.1 47

B Appendix-Example using real *Pu data

In this appendix an example using real 2>®Pu data is discussed in detail. The
urine bioassay data are given in table 4 and displayed in Fig. 6 (this data is
also downloadable from our web site http:\\www.lanl.gov\Bayesian, Bayesian
software package I1, file urine.ex). This example was selected because it had
multiple intakes and relatively few urine data points.

The subject worked with plutonium since the mid 1940’s, was involved in
several 2*°Pu incidents in the 1940’s, and had several 2*°Pu intakes. The sub-
ject’s 228Pu urine bioassay record begins in 1968, when specific analysis for
238pu started at Los Alamos.

The same urine collection protocol was used for all samples, and the bio-
logical /sample collection variability is assumed to be 30% of the true amount
present. The limiting probability for an intake is assumed to be 50%, that is,
lower probability intakes are dropped. The form of the prior probability distri-
bution of intake amount x is assumed to be delta function plus log normal, with
the log normal having the form

P(z) =

. o ””%)21 (43)

ex
V2nogzx P [ 203

where 04 = 2 and z; = 37Bq. The prior probability of an intake in the time
range of this data was assumed to be 5% per year before 1/1/1970 and 1% per
vear after. Asa result of the incidents in the 1940’s (early 2> Pu mixtures used at
Los Alamos nominally contained about 10% 2**Pu by activity), a discrete prior
probability of 256% for an intake on 6/9/1945 was assumed. For this discrete
incident-related prior, the quantity z; in Eq. 43 above was 370 Bq.

Under these assumptions the unfolding algorithm gave the results shown in
Table 5 with the average calculated urine excretion displayed in Fig. 3 (the
calculations may be done using the unfolding program downloadable from our
web site, by copying the file urine.ex into the urine input file urine.in and exe-
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Table 4: Pu-238 Urinalysis Results

Collected date(MM/DD/YYYY)

Excretion(mBq/d) & 1 SD

03/15/1968
06/13/1968
09/13/1968
12/13/1968
03/20/1969
12/18/1969
03/19/1970
06/18/1970
09/24/1970
03/18/1971
06/29/1971
09/22/1971
09/18/1972
12/08/1972
03/15/1973
06/27/1973
09/17/1973
12/21/1973
03/21/1974
06/17/1974
09/16/1974
12/18/1974
03/17/1975
06/16/1975
09/19/1975
12/17/1975
03/17/1976
07/02/1976
09/12/1976
12/08/1976
06/24/1977
09/15/1977
09/01/1978
10/20/1978
01/18/1979
04/20/1979
05,/28/1979

1. £0.9
1.8+ 0.9
0.3 £09
4.8 £ 2.
0. £09
0. £09
0. £09
0.5£+09
0.5£+09
1.2+ 0.7
4.1 £0.7
22+£05
129+ 16
75+ 1.1
2. £04
3. £06
27+£05
3.1+£06
1.1 +£04
3.8+£0.7
21+£05
1.5 +04
2. £04
1.1 +£04
0.8+04
1. £04
1.2+ 04
1.4+ 04
1.4+ 04
0.5+04
1. £04
04+04
22+£05
0.3 £04
09=+04
04+04
1.6 £ 04
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Figure 6: Actual 2>*Pu urine data.

cuting uf.eze following the instructions in the file readme. 1st and the instruction
manual manual.pdyf).

Table 5 shows for the calculated intakes (most of this information comes
from the output file ufint.dat described in the documentation): 1) the number
of urine data points M in the data block used to determine the intake, 2) the
Bayesian posterior probability of the intake (must be larger than the limiting
probability of 50 %), 3) the intake type [ denoted by a three-character code
defining a biokinetic model discussed in Appendix A, the Bayesian posterior
expectation value of x?/M for intake type [, the Bayesian posterior probability
P(lly) of intake type ! given the data, 4) the Bayesian posterior probability
of an intake P(intake|l,y) given model ! and data (which can be calculated as
E(g|l,y) using Eq. 31 for the particular value of {, where g(z;,1) =1 for z; > 0,
otherwise 0), 5) the Bayesian posterior expectation value of the intake amount
x in units of 37 Bgq, given intake type { and data, and 6) the Bayesian posterior
average value of the intake amount squared given intake type [ and data.

Our method uses the first data point only as a baseline defining the first
time interval, so the sum of the M’s in Table 5 is 36 even though there are 37
data points.

The intake probability P(intake) is given by

P(intake) = ZP(intakeU, y)P(ly). (44)
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Table 5: Calculated intakes

Intake date M P(intake) [ x?/M P(lly) P(intake|l,y) E(z|l,y) E(z?|l,y)

6/9/1945 9 0.542 iys 1.263 0.1275 0.5504 8.135 166.4
iym 1.283 0.2485 0.5387 13.65 5074
iyl 1.323 0.1149 0.5014 24.02 1882
iws 1.256  0.127 0.5487 5.927 836.31
iwm 1.259 0.1274 0.5502 7.025 122.6
iwl 1.258 0.1273 0.5498 6.506 104.5
iee 1.262 0.1275 0.5504 8.091 164.5
5/8/1971 2 0.999 iys 2.171 0.0123 0.9902 80.25 7207
iym 1.456 0.0383 0.9937 95.66 10050
iyl 0.881 0.0386 0.9969 80.77 7089
iws 0.790 0.3035 0.9996 4.724 24.24
iwm 0.730 0.2924 0.9996 6.111 40.54
iwl 0.660 0.3145 0.9996 6.112 40.52
iee 7.519 0.0005 0.7583 181.8 53370
3/21/1972 25 1 iys 3.189 1.372E-09  0.5013 6.201 34.69
iym 3.046 3.711E-09  0.6313 15.86 434.8

iyl 2.259 1.178E-07  0.9942 73.73 5721
iws 1.039 0.7056 1 12.32 155
iwm 1.118 0.2293 1 15.55 2471
iwl 1.224 0.0651 1 14.95 2285

iee 3.423 8.357E-10  0.1814 1.857 22.02
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Similarly, if D; denotes a dose conversion factor (for example, relating intake x
to CEDE for intake type [), then the Bayesian posterior average dose d and its
standard deviation are given by

d = Y DiE(a|ly)P(ly) (45)

oq = \/ZDZQE(x2|l,y)P(l|y)d2.

We note from Table 5 that the first intake has a probability of only 0.54 and
so it might be considered marginal. Setting the limiting intake probability to
a higher value such as 90% rather than 50% would eliminate this intake. The
other two intakes are quite probable, with probabilities of nearly 1.

To compare our interpretation of this data with the current “standard”
method is problematical, since the “standard” method is highly subjective. For
example, the fourth data point is 2.4 standard deviations from zero, and an
internal dosimetrist might associate this data point with an intake in the time
interval preceding this high data point. However our algorithm shows less than
2% probability that this is the case (if the limiting probability for an intake is
taken as 2%, an intake still is not calculated in this interval). Also the second
intake, involving data points 11 and 12, might be overlooked, even though our
analysis shows it to be quite probable.

Obviously internal dosimetry is not a precise science. It is our intention
to move it more in the direction of science rather than art. An advantage of
our approach is that it is “algorithmic” with stated parameters. Subjectivity
and professional judgment (“art”) then become explicit in the choice of these
parameter values.

We plan to undertake Monte Carlo studies of the accuracy of the unfolding
algorithm using simulated data for various assumed intake scenarios. We then
will be able to state the accuracy of this approach and investigate the sensitivity
to choice of parameters.

C Appendix-Multiplicative factor to express un-
certainty

The situation can arise where an intake is known with high probability to have
occurred, while the associated dose is very uncertain. As an alternative to
expressing a result referring to a positive quantity like dose as

z 40, (46)

where ¢ may exceed x, we can express uncertainties as a multiplicative factor. A
simple way to do this is to assume that the distribution of the positive quantity
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z is approximately log normal, with standard deviation of the logs given by a;
and mean . In terms of these parameters, the mean and standard deviation
are given by [21]

x = exp(p+oi/2)
o = zy/exp(o?)—1. (47)
Thus an indication of the uncertainty of x might be expressed as X + f;,,, where

fin = explay) = expr/log(l+ (o/x)?). (48)
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